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SUMMARY

Recently, the domain-free discretization (DFD) method was presented to e�ciently solve problems
with complex geometries without introducing the coordinate transformation. In order to exploit the high
performance of the DFD method, in this paper, the local DFD method with the use of Cartesian mesh
is presented, where the physical domain is covered by a Cartesian mesh and the local DFD method is
applied for numerical discretization. In order to further improve the e�ciency of the solver, the newly
developed solution-based adaptive mesh re�nement (AMR) technique is also introduced. The proposed
methods are then applied to the simulation of natural convection in concentric annuli between a square
outer cylinder and a circular inner cylinder. Numerical experiments show that the present numerical
results agree very well with available data in the literature, and AMR-enhanced local DFD method is
an e�ective tool for the computation of �ow problems. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: DFD method; Cartesian mesh; adaptive re�nement; incompressible �ow; natural conve-
ction; eccentric annuli

1. INTRODUCTION

Most of �ow problems can be simulated by using conventional numerical approaches such as
�nite di�erence (FD) method [1–3] and di�erential quadrature (DQ) method [4–8]. Usually,
these methods con�ne the numerical discretization of governing equations in the physical
domain, which is regular. Due to this feature, if irregular geometry is involved, the coordinate
transformation and body-�tted grid generation have to be introduced. This process not only
brings more complexity into the computation, but also introduces additional error into the
simulation.
Recently, the domain-free discretization (DFD) method was presented by Shu and his

co-workers [9, 10] to solve partial di�erential equations (PDEs) on an irregular domain without
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introducing the coordinate transformation. The basic idea of DFD is inspired from the analyti-
cal method. That is, the discrete form of given PDEs can be irrelevant of the solution domain.
It may involve some points which may not be the mesh node and can be inside or outside
the solution domain. The functional values at those points can be evaluated by approximate
forms of solution along a line. In the work of Shu and Fan [9], the PDEs on the singly con-
nected domain are solved in the Cartesian coordinate system, and the approximate forms of
solution are obtained along each vertical or horizontal line. In the work of Shu and Wu [10],
the PDEs on the doubly connected domain are solved in the cylindrical coordinate system,
and the approximate forms of solution are obtained along each radial line. Since approximate
form of solution along each line is obtained by using all the information of mesh nodes
at that line, the DFD method is named the global DFD approach. In the earlier applica-
tions [9, 10], this approach has demonstrated its high e�ciency and accuracy in solving PDEs
such as Navier–Stokes equations on irregular domains. However, the global DFD encounters
two major di�culties. One is for extrapolation. When the outside point is far away from
the boundary, the global form of solution along the respective line, an example being the
Lagrange interpolated polynomial, would generate large extrapolation coe�cients, causing
large numerical errors. Another di�culty is for multiply connected (more that two) domain
problems. For this case, it is di�cult to get approximate form of solution along a line where
more than two boundary points are involved. To remove these di�culties and make the method
be more general, the local DFD approach is developed in this work. In the present approach,
all numerical work including discretization of derivatives and approximate form of solution
for interpolation=extrapolation is made locally by using low-order polynomials. Note that in
the local DFD approach, any problem is solved in the Cartesian coordinate system. So, in
this sense, the local DFD is a kind of Cartesian mesh solver.
In the present DFD-Cartesian mesh solver, the low-order FD schemes are adopted for

numerical discretization. Since the FD schemes have simple forms on the uniform mesh, they
are usually applied on the uniform mesh. Obviously, the use of uniform mesh in the whole
domain is not e�cient for a �ow problem since there is a thin boundary layer near solid
walls which need �ner mesh than other regions. We have to a�ord huge computational cost
to capture the thin boundary layer if a single uniform mesh is used. From the computational
point of view, the use of adaptive mesh re�nement (AMR) technique is the best remedy
for the e�ciency improvement. In the past decades, intensive research and e�orts have been
devoted to the development of adaptive re�nement procedures. As a result, a large number
of adaptive algorithms have been proposed [11–15]. One representative of structured grid
approaches is adaptive Cartesian mesh re�nement proposed by Berger and Oliger [11] and
Berger and LeVeque [12]. Their approach is established on regular Cartesian meshes, but
arranged hierarchically with di�erent resolutions. At the �ne=coarse cell interfaces, special
treatment is required for the communications between the meshes at di�erent levels. Recently,
Ding and Shu [16] proposed a new AMR strategy—stencil adaptive algorithm, which is easy
for implementation, and has been successfully applied to simulate the incompressible �ow
with simple geometry.
In this work, the local DFD approach is combined with the stencil adaptive algorithm [16]

to solve problems with curved boundary. The proposed approach is validated by its application
to simulate natural convection in a concentric annulus between an inner circular cylinder and
an outer square cylinder. The obtained numerical results agree very well with available data
in the literature.
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2. AMR-ENHANCED LOCAL DFD METHOD

2.1. Local DFD method

The details of the global DFD method can be found in the work of Shu and Fan [9] and Shu
and Wu [10]. The procedure of the local DFD method on the Cartesian mesh (the present
method) is described here, which is illustrated in Figure 1.
For simplicity, we assume that the mesh is uniform, and the mesh spacing in both the x and

y directions is the same. Suppose that the solution of a problem is expressed by u(x; y) in the
Cartesian coordinate system. In Figure 1, the mesh nodes inside the physical domain (interior
mesh nodes) are represented by the solid circle, while the mesh nodes outside the domain are
represented by open circles. The open squares on the boundary are points intersected by the
mesh lines and boundary curve.
It should be noticed that the discretization of the PDE is always made at the interior mesh

nodes (i.e. the solid circle in Figure 1). Therefore, the functional values at the nodes outside
the domain (i.e. the open circle in Figure 1) are not de�ned. Since the numerical discretization
only involves the functional values at the reference node and its neighbours, for the nodes
which are not near the boundary such as F , there is no problem to discretize derivatives
in both the x and y directions by using the central-di�erence scheme on the uniform mesh.
For numerical discretization of derivatives at the nodes near the boundary such as B1, the
local DFD method is applied. According to the DFD method, the discrete form of PDEs can
involve some nodes outside the solution domain, and the functional values at these outside
nodes such as node E can be computed by using local low-order approximate form of solution.
Therefore, the central-di�erence scheme on the uniform mesh can still be used by the local
DFD method.
For example, the discrete form of the �rst and second derivatives, respectively, in the x

direction at the position B1 can be approximated by

@2uB1
@x2

=
1
h2
[uE − 2uB1 + uC1] + o(h2) (1)

Figure 1. Con�guration of the DFD-Cartesian mesh method with mesh and extrapolation points.
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@uB1
@x

=
1
2h
[uE − uC1] + o(h2) (2)

where h is the mesh spacing on the uniform mesh in the x direction, O(h2) denotes the second
order of the schemes.
The functional value at node E can be calculated by extrapolation through the local ap-

proximate form of the solution. In this paper, we will use the three local points (A1, B1,
C1) to constitute a quadratic polynomial to do extrapolation at the node E. Nodes B1, C1 are
the nodes inside the domain where the functional values are given by the governing equa-
tion, while point A1 is the intersection point of the mesh line and the boundary, where the
functional value can be given by the boundary condition. The respective formulation for the
extrapolation at node E can be written as

uE =
(xE − xB1)(xE − xC1)
(xA1 − xB1)(xA1 − xC1)

uA1 +
(xE − xC1)(xE − xA1)
(xB1 − xC1)(xB1 − xA1)

uB1

+
(xE − xA1)(xE − xB1)
(xC1 − xA1)(xC1 − xB1)

uC1 (3)

Substituting Equation (3) into Equations (1) and (2), the discrete form of the x derivatives
at node B1 can be given, which only involves information at interior and boundary points.
Similarly, the discrete form of the �rst- and second-order derivatives in the y direction at

the position B2 is,

@2uB2
@y2

=
1
h2
[uC2 − 2uB2 + uE] + o(h2) (4)

@uB2
@y

=
1
2h
[uC2 − uE] + o(h2) (5)

where

uE =
(yE − yB2)(yE − yC2)
(yA2 − yB2)(yA2 − yC2)

uA2 +
(yE − yC2)(yE − yA2)
(yB2 − yC2)(yB2 − yA2)

uB2

+
(yE − yA2)(yE − yB2)
(yC2 − yA2)(yC2 − yB2)

uC2 (6)

It should be noted that two distinct values are obtained at the node E. One is used for the
discretization of x derivatives at node B1, while the other is used for the discretization of y
derivatives at node B2.

2.2. Implementation of boundary conditions

From the previous section, it is known that the boundary conditions should be implemented
at points A1 and A2, and the functional values calculated from the boundary conditions have
to be substituted into the discrete form of the PDEs through the process of extrapolation
(Equations (3) and (6)). The implementation of the boundary conditions at points A1 and A2
can in�uence the computation greatly. Basically, there are two types of boundary conditions:
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Dirichlet type and Neumann type. The implementation of these two boundary conditions is
shown below.

2.2.1. Dirichlet-type boundary condition. If the boundary conditions at points A1 and A2 are
the Dirichlet type, i.e. the variable values are known at points A1 and A2, the implementation
is straightforward. That is, the functional values can be substituted directly into Equations (3)
and (6).

2.2.2. Neumann-type boundary condition. If the gradient in a particular direction (usually
normal to the boundary) is given as the boundary condition, it may be necessary to use some
close-to-boundary points to approximate the derivatives at boundary. Here, we take the point
A1 as an example. Suppose that the �rst-order derivative is given at the boundary point A1.
Then the following second-order one-sided approximation form can be used,(

@u
@x

)
A1

≈ uB1(xC1 − xA1)2 − uC1(xB1 − xA1)2 − uA1[(xC1 − xA1)2 − (xB1 − xA1)2]
(xC1 − xA1)(xB1 − xA1)(xC1 − xB1)

(7)

When zero gradient in the x direction is prescribed and the �rst-order approximation is
adopted, we have (

@u
@x

)
A1
=0⇒ uB1 − uA1

xB1 − xA1
=0⇒ uA1 = uB1 (8)

If the Neumann boundary condition at point A1 is given in the normal direction to the
boundary �n, say @u=@ �n; @2u=@ �n2, the points aa, bb, cc as shown in Figure 1, which are the
intersection points of the perpendicular line through A1 and the grid lines, are used in
the approximation formulae similar to Equations (7) and (8) except that the perpendicular
distances |aa−A1|; |bb−A1|; |bb−aa| instead of the distances in the x direction are used. The
functional values at the points aa, bb, cc can be calculated by interpolation between nodes
B1 and G (for point aa), nodes H and G (for point bb), and nodes H and F (for point cc).

2.3. Identifying the status of mesh nodes

In the local DFD method, an important step is to identify which mesh node is the interior
node where the governing equation should be discretized, and which mesh node is outside of
the physical domain but near the boundary where extrapolation should be applied. In other
words, we should know the status of the mesh nodes. In this work, the status for interior
node is represented by 0 (the solid circle in Figure 1), such as

STATUS(node B1)=0

and the status for the extrapolation node is represented by 1 (the open circle in
Figure 1), i.e.

STATUS(node E)=1

In the local DFD method, the discretization of the PDE is only made at mesh nodes where
STATUS(i; j)=0.
It is obvious that the status of mesh node should be identi�ed before the local DFD method

is applied. In this work, we propose the so-called ‘odd=even parity method’ inspired from the
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Figure 2. Illustration of ‘odd=even parity method’.

scan-line polygon �ll algorithm in computer graphics. The ‘odd=even parity method’ can be
illustrated in Figure 2.
Suppose that there is a scan-line i1 in the horizontal direction. This line has four intersection

points with solid body (denoted by �), which are noted as p1, p2, p3, p4. It was found that
the odd index of intersection point (such as p1, p3) is always the point where the scan-line
moves in the body while the even index of the intersection point (such as p2, p4) is the point
where the scan-line moves out of the body. Therefore, we can number the series of inter-
section points in forward sequence along the scan direction, and mark the mesh nodes between
every odd=even parity as STATUS=1, i.e. STATUS(i1; j1–j2)=1 and STATUS(i1; j4–j5)=1
in Figure 2.
We found that this method can determine the status of nodes in the whole domain very

quickly.

2.4. Adaptive mesh re�nement

The adaptive stencil re�nement approach proposed by Ding and Shu [16] is applied in this
work to enhance the e�ciency of local DFD method. Some details of the approach are
described below.

2.4.1. Two types of stencil and numerical discretization. As shown in Figure 3, there are two
types of stencil for a reference node A, where nodes marked 1; 2; 3; 4 are the four supporting

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:897–912
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Figure 3. Two types of stencil on uniform Cartesian mesh: (a) Type I; and (b) Type II.

nodes. They are recorded as

1st support node of node A: SUP(A; 1)=node 1

2nd support node of node A: SUP(A; 2)=node 2

3rd support node of node A: SUP(A; 3)=node 3

4th support node of node A: SUP(A; 4)=node 4

The four supporting nodes and node A form the stencil. Numerical discretization of the �rst-
order derivative at node A for the two types of stencil can be written as

Type I :
(
@u
@x

)
A
=

u3 − u1
2h

;
(
@u
@y

)
A
=

u4 − u2
2h

(9a)

Type II :
(
@u
@x

)
A
=
(u2 + u3)− (u1 + u4)

2
√
2h

;
(
@u
@y

)
A
=
(u3 + u4)− (u1 + u2)

2
√
2h

(9b)

where h is the mesh spacing. On the other hand, the Laplacian operator on the two types
of stencil (Types I and II) can be written as

(∇2u)A =
(
@2u
@x2

+
@2u
@y2

)
A
=

u1 + u2 + u3 + u4 − uA
h2

(10)

Equation (10) is very useful in the discretization of N–S equation since its di�usive operator
is Laplacian operator.

2.4.2. Stencil re�nement. As shown in Figure 4, when re�nement is needed, four new nodes
1′; 2′; 3′; 4′ are added by simply taking the midpoint of the edge 12, 23, 34, 41 for Type I, or
by taking the midpoint of the edge 41, 12, 23, 34 for Type II.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:897–912
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Figure 4. Transformation of two types of stencil when re�nement is performed: (a)
Type I → Type II; and (b) Type II → Type I.

The new supporting nodes for node A (nodes 1′; 2′; 3′; 4′) can be recorded as

SUPnew(A; 1)=node 1′

SUPnew(A; 2)=node 2′

SUPnew(A; 3)=node 3′

SUPnew(A; 4)=node 4′

which form another type of stencil. As shown in Figure 4, it is obvious that in the above
re�nement process, Type I stencil will change to Type II stencil while Type II stencil will
change to Type I stencil. And for each case, the mesh spacing is reduced by the rate of√
2
2 . As the re�nement is carried out at node A, level-by-level, the stencil type appears
alternately.
For the new added nodes such as 1′; 2′; 3′; 4′, it is necessary to �nd their supporting nodes

and determine their functional values. We found that node A and its new added nodes
1′; 2′; 3′; 4′ have the same stencil type. Take node 1′ in Figure 4 as an example. Its sten-
cil is shown in Figure 5:
The �rst supporting node of node 1′ is located at node B, which can be either the second

supporting node of node 1 or the �rst supporting node of node 2. The supporting nodes for
node 1′ can then be determined as follows:

SUP(1′; 1)=SUP(1; 2) or SUP(2; 1);whichever being located at node B

SUP(1′; 2)=node 2

SUP(1′; 3)=node A

SUP(1′; 4)=node 1

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:897–912



AMR-ENHANCED LOCAL DFD METHOD 905

Figure 5. The stencil type of node 1′.

The functional value at node 1′ can be obtained by taking the average of its four supporting
nodes. The supporting nodes and the functional values of nodes 2′; 3′; 4′ can be determined
in a similar way. After the re�nement, the governing equations are discretized at the original
mesh nodes and the new re�ned mesh nodes to get the numerical solution.
It should be noted that the discretization of the derivatives at a mesh node is always based on

its support nodes. Therefore, it is necessary to record the connection between the support nodes
and the mesh node at every level of re�nement. This can make mesh re�nement=coarsening
very easy.

2.5. Solution-based mesh re�nement or coarsening

In this paper, the re�nement and coarsening are solution based. That is, the adaptive mesh
is re�ned or coarsened according to the characteristics of the �ow. Re�nement or coarsening
takes place only after a solution is su�ciently converged. In our study, if the di�erence of
certain variable (such as temperature) between the node A and its support nodes is larger than
a user-speci�ed maximum value, the node A is �agged to be re�ned. On the contrary, if the
di�erence is less than a prede�ned minimum value, the node A is �agged to be coarsened.
It is obvious that the total number of the mesh nodes in the adaptive mesh depends on these
prede�ned maximum and minimum values.

3. SIMULATION OF NATURAL CONVECTION IN CONCENTRIC ANNULUS
BETWEEN INNER CIRCULAR CYLINDER AND OUTER SQUARE CYLINDER

Natural convection in a concentric annulus is the most commonly encountered problem in
practical applications. In this work, it is solved by the AMR-enhanced local DFD method.

3.1. Governing equations and numerial discretization

The Navier–Stokes equations in the vorticity stream function formulation are taken as the
governing equations for the problem, which are written as

@2 
@x2

+
@2 
@y2

=! (11)
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Figure 6. Schematic of the natural convection problem.

@!
@t
+ u

@!
@x
+ v

@!
@y
=Pr

(
@2!
@x2

+
@2!
@y2

)
− Pr ·Ra · @T

@x
(12)

@T
@t
+ u

@T
@x
+ v

@T
@y
=

@2T
@x2

+
@2T
@y2

(13)

where !,  , T , Pr, and Ra are the vorticity, stream function, temperature, Prandtl number
and Rayleigh number, u; v are the components of velocity in the x and y directions, which
can be calculated by

u=
@ 
@y

; v= − @ 
@x

(14)

The geometry of the problem is given in Figure 6. It is a concentric annulus between a square
outer cylinders and a circular inner cylinder. The reference length is taken as the side length
of square L. The radius ratio is de�ned as rr =L=2R, where R is the radius of the inner
circular cylinder. It is clear that this is a problem with irregular geometry in the Cartesian
coordinate system.
The boundary conditions on two impermeable isothermal walls are given by

 = u= v=0; !=
@2 
@n2

; T =1 (15)

on the inner cylinder and

 = u= v=0; !=
@2 
@n2

; T =0 (16)
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on the outer cylinder. It should be noted that according to Equation (11), the implementation
of vorticity at the boundary is actually the approximation of the second-order derivative of
stream-function. As shown in Figure 1, the vorticity at the wall !A1 can be given by the
following second-order scheme as

!A1 =
3
l2
( aa −  A1)− 1

2
!aa (17)

where l is the perpendicular distance between aa and A1. Point aa is the �rst intersection
point between the line through A1 along the direction of vector �n and the grid line.
In the AMR-enhanced local DFD method, the second-order central di�erence scheme

is applied in both the x and y directions to approximate the spatial derivatives. Equations
(11)–(13) can be discretized by the present method at a mesh node (xi; yj) as

 i+1; j − 2 i; j +  i−1; j
�x2

+
 i; j+1 − 2 i; j +  i; j−1

�y2
=!i; j (18)

d!i; j

dt
+ ui; j

!i+1; j − !i−1; j
2�x

+ vi; j
!i; j+1 − !i; j−1

2�y

=Pr ·
(
!i+1; j − 2!i; j +!i−1; j

(�x)2
+

!i; j+1 − 2!i; j +!i; j−1
(�y)2

)

−Pr ·Ra · Ti+1; j − Ti−1; j
2�x

(19)

dTi; j

dt
+ ui; j

Ti+1; j − Ti−1; j
2�x

+ vi; j
Ti; j+1 − Ti; j−1

2�y

=
Ti+1; j − 2Ti; j + Ti−1; j

(�x)2
+

Ti; j+1 − 2Ti; j + Ti; j−1
(�y)2

(20)

In Equations (18)–(20), if one or more of nodes (i − 1; j); (i + 1; j); (i; j − 1); (i; j + 1)
(i.e. the supporting nodes of mesh node (xi; yj)) are not located in the physical domain,
(STATUS = 1), then the functional values at these nodes can be evaluated by using Equations
(3) and (6). The time derivatives in Equations (18)–(20) are approximated by Euler implicit
scheme. The resultant algebraic equations are then solved by SOR method.

3.2. Numerical results and discussion

At �rst, the present method is validated by its application to simulate natural convection in
the concentric annulus between inner circular and outer square cylinders. In this study, the
Prandtl number is �xed at 0.71. The cases with the aspect ratios of rr =1:67; 2:5; 5:0 and
Rayleigh numbers of 104; 105, and 106 were studied. The mesh size of uniform mesh adopted
in our computation is 71× 71.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:897–912
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Table I. Comparison of results for natural convection in concentric annuli between an inner circular
cylinder and an outer square cylinder (Pr=0:71).

 max �Nui

Ra rr Present work Reference [18] Reference [17] Present work Reference [18] Reference [17]

5.0 1.76 1.71 1.73 2.065 2.082 2.071
104 2.5 1.01 0.97 1.02 3.222 3.245 3.331

1.67 0.50 0.49 0.50 5.353 5.395 5.826

5.0 10.10 9.93 10.15 3.781 3.786 3.825
105 2.5 8.31 8.10 8.38 4.902 4.861 5.080

1.67 5.08 5.10 5.10 6.184 6.214 6.212

5.0 20.93 20.98 25.35 6.362 6.106 6.107
106 2.5 24.44 24.13 24.07 9.181 8.898 9.374

1.67 19.86 20.46 21.30 12.30 12.00 11.62

The local heat transfer rate on the inner cylinder can be computed by

q= h(Ti − To)= − k
@T
@n

(21)

where h represents the local heat transfer coe�cient, k is the thermal di�usivity. Because
Ti − To = 1, from Equation (21), we can obtain

h= − k
@T
@n

(22)

Then the average heat transfer coe�cient �h can be computed as

�h=
1
2�

∫ 2�

0
h d� (23)

And the average Nusselt numbers for the outer and inner boundaries are, respectively, deter-
mined by

�Nui =
�hiSi
k

; �Nuo =
�hoSo
k

(24)

where Si and So are de�ned in the same way as in the work of Moukalled and Acharya [17].
In their work, the computational domain was taken as half of the physical domain due to the
symmetry, so Si and So are taken as half of the circumferential lengths of the inner and outer
cylinder surfaces, respectively. Since at steady state, the Nusselt numbers along the inner and
outer walls are the same, there is no need to pay separate attention to �Nui and �Nuo. Thus in
this study, we only show the value of �Nui.
The maximum stream function value  max and the average Nusselt number �Nui obtained

by the present method are compared with those of Moukalled and Acharya [17] as well as
those of Shu et al. [18] in Table I. It should be noted that due to di�erent ways of non-
dimensionalization between the work of Moukalled and Acharya [17] and the present study,
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Figure 7. Streamlines and isotherms in concentric annulus between an inner circular cylinder and an outer
square cylinder (Ra=106;Pr=0:71; rr = 5:0; 2:5; 1:67).

the equivalent  max in Table I is the one given from Moukalled and Acharya [17] multiplying
by the Prandtl number. It is noted that the reference length used in the Rayleigh number is the
side length of square L. From Table I, it can be seen that the present results agree very well
with available data in the literature. The streamlines and isotherms for Ra=106 are shown
in Figure 7.
To study the e�ciency of the AMR-enhanced local DFD method, cases with aspect

ratio of rr =2:5 and Rayleigh numbers of 104; 105 and 106 are considered. In this paper,
the temperature is adopted as the indicator of the solution-based mesh re�nement=coarsening.
In the study, the maximum and minimum values of the temperature di�erence between a
certain node and its support nodes �Tmax;�Tmin, which are used as the �ag to implement
re�nement=coarsening, are given as �Tmax =0:4, �Tmin =0:03.
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Table II. Comparison of the number of nodes and running time needed to achieve the
similar accuracy by the DFD-Cartesian mesh solver with and without adaptive re�nement

(Ra=104; 105; 106; Pr=0:71; rr = 2:5).

No. of nodes No. of nodes Running
Ra Method (before re�nement) (after re�nement) time  max �Nui

Method 1 13× 13= 289 383 0.828 1.05 3.327
104 Method 2 35× 35= 1225 1225 3.016 1.05 3.368

Reference [17] — — — 1.02 3.331

Method 1 21× 21= 441 981 5.422 8.35 5.101
105 Method 2 65× 65= 4225 4225 79.67 8.29 4.904

Reference [17] — — — 8.38 5.080

Method 1 41× 41= 1681 2379 42.25 24.74 9.321
106 Method 2 71× 71= 5041 5041 117.41 24.44 9.181

Reference [17] — — — 24.07 9.374

Method 1: DFD-Cartesian mesh solver with AMR; Method 2: DFD-Cartesian mesh solver without AMR.

It is found that, to achieve the acceptable accuracy, the mesh must be �ne enough to cap-
ture geometric features of the complex boundary as well as the gradient of the variables. In
fact, the mesh re�nement is mainly needed in the region near the boundary to capture the
thin boundary layer. In other regions, relatively coarse mesh can be used. The combination
of �ne and coarse meshes can greatly save the computational e�ort while keeping the
accuracy of solution. Fortunately, this can be made by using the AMR-enhanced local DFD
method.
Table II compares the e�ciency and accuracy of local DFD method with and without

AMR, where Method 1 denotes the DFD-Cartesian mesh solver with adaptive re�nement and
Method 2 denotes the solver without adaptive re�nement. It should be noted that the relaxation
factors of SOR iteration for  , !; T and time interval �t in the Euler implicit scheme are
�ne-tuned to their optimal values for both methods.
It can be seen from Table II that, as Rayleigh number increases, more and more mesh

points are needed to keep accuracy of numerical solution. For any case, to reach the same
order of accuracy, the �nal number of �eld nodes needed by Method 1 is far less than that of
Method 2, and the running time for Method 1 is also less than Method 2. This indicates that
the e�ciency of the DFD-Cartesian mesh method is improved greatly by implementing the
adaptive re�nement technique. Figure 8 shows the adaptive mesh according to the tempera-
ture �eld. Clearly, very �ne mesh points are distributed in the region where the temperature
gradient is high.

4. CONCLUSIONS

In this paper, the AMR-enhanced local DFD method is presented and applied to solve natural
convection in concentric annulus between an inner circular cylinder and an outer square
cylinder. The obtained numerical results compare well with available data in the literature. It
has been demonstrated that with present method, the body-�tted grid generation and coordinate
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Figure 8. Isotherms and adaptive re�ned meshes based on temperature solution
(Ra=104; 105; 106; Pr=0:71; rr = 2:5).

transformation, which are necessary for the traditional numerical methods such as FD and DQ
method for the problem with irregular geometry, are totally avoided.
With the AMR technique introduced in this paper, the local DFD method can make the

numerical computation much more e�ective than its original version. Good e�ciency and
accuracy indicate that the present method with the AMR has potential to solve practical �ow
problems.
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